Semantically Annotated Lesson observation Data in Learning Analytics Datasets: a Reference Model
نویسندگان
چکیده
Learning analytics (LA) and lesson observations are two approaches frequently used to study teaching and learning processes. In both cases, in order to extract meaningful data interpretations, there is a need for contextualization. Previous works propose to enrich LA datasets with observation data and to use the learning design as a framework to guide the data gathering and the later analysis. However, the majority of lesson observation tools collect data that is not compliant with LA datasets. Moreover, the connection between the learning design and the data gathered is not straightforward. This study reflects upon our research-based design towards an LA model for context-aware semantically annotated lesson observations that may be integrated in multimodal LA datasets. Six teachers (out of which 2 were also researchers) with previous experience in lesson observation were engaged in a focus group interview and participatory design session that helped us to evaluate the LA model through the conceptual design of Observata (a lesson observation tool that implements our model). The findings show the feasibility and usefulness of the proposal as well as the potential limitations in terms of adoption.
منابع مشابه
How to Aggregate Lesson Observation Data into Learning Analytics Datasets?
The technological environment that supports the learning process tends to be the main data source for Learning Analytics. However, this trend leaves out those parts of the learning process that are not computer-mediated. To overcome this problem, involving additional data gathering techniques such as ambient sensors, audio and video recordings, or even observations could enrich datasets. This p...
متن کاملLearning Analytics - Annotated Bibliography Learning Analytics in Higher Education: An Annotated Bibliography Current State of Learning Analytics in Higher Education Drivers, Trends, Benefits, and Challenges
The purpose of this study was to develop an analytics maturity model through which institutions can assess their own progress in the use of academic and learning analytics. More than half of the institutions surveyed are actively engaging in activities that meet the definition of data analytics in the areas of enrollment, retention, institutional resource optimization, and financial management....
متن کاملmark Alan Finlayson inferring Propp ’ s Functions from Semantically Annotated text
Vladimir Propp’s morphology of the Folktale is a seminal work in folkloristics and a compelling subject of computational study. I demonstrate a technique for learning Propp’s functions from semantically annotated text. Fifteen folktales from Propp’s corpus were annotated for semantic roles, co-reference, temporal structure, event sentiment, and dramatis personae. I derived a set of merge rules ...
متن کاملA Progressive Learning Approach to Chinese SRL Using Heterogeneous Data
Previous studies on Chinese semantic role labeling (SRL) have concentrated on a single semantically annotated corpus. But the training data of single corpus is often limited. Whereas the other existing semantically annotated corpora for Chinese SRL are scattered across different annotation frameworks. But still, Data sparsity remains a bottleneck. This situation calls for larger training datase...
متن کاملBig Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions
The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IxD&A
دوره 33 شماره
صفحات -
تاریخ انتشار 2017